Mathematic formulas and laws

Numbers:

0	zero	10	ten	20	twenty	30	thirty
1	one	11	eleven	21	twenty-one	40	forty
2	two	12	twelve	22	twenty-two	50	fifty
3	three	13	thirteen	23	twenty-three	60	sixty
4	four	14	fourteen	24	twenty-four	70	seventy
5	five	15	fifteen	25	twenty-five	80	eighty
6	six	16	sixteen	26	twenty-six	90	ninety
7	seven	17	seventeen	27	twenty-seven	100	one hundred
8	eight	18	eighteen	28	twenty-eight	500	five hundred
9	nine	19	nineteen	29	twenty-nine	100	0 one thousand
125: one hundred and twenty five2 000 000 000: two billion3,14: three point fourteen			ty five	1 00 1 00 1,73	00 000: one million 00 000 000 000: one 3: one point seventy	e tril v thre	lion ee

negative number (–)						positi	ve nu	mber (+)	
-12	-9	-6	-3	 0	3	6	9	12	15	

Number greater than zero (N>0) is a positive number. Example: 2, 7, 8, +11,... Number smaller than zero (N<0) is a negative number. Example: -2, -7, -8, -11,...

	symbol	example	
Addition	+	3 + 8 = 11	three plus eight equals eleven
Subtraction	_	20 - 12 = 8	twenty minus twelve equals eight
Multiplication	$ imes (\cdot)$	$4 \times 3 = 12$	four times three equals twelve
Division	:	15:5=3	fifteen divided by five equals three

Basic mathematic operations:

Multiplying a number several times by itself is called power. $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = \text{two}$ to the power $7 = 2^7 = 128$ The second power is also called a square: $a \times a = a^2$ $(4 \times 4 = 4^2 = 16)$

The second power is also called a square: $a \times a = a^2$ The third power is named cube: $a \times a \times a = a^3$ (5×5×5 = 125) The opposite of power is root.

A square root of a number x is a number a such that $a^2 = x$, or, in other words, a number a whose square is x.

Every positive number x has two square roots: $\sqrt{x} = \pm a$ *Example:* $\sqrt{9} = 3$ and $\sqrt{9} = -3$; because $3 \times 3 = 9$ and $(-3) \times (-3) = 9$.

A cube root of a number, denoted $\sqrt[3]{x}$ or $x^{1/3}$, is a number *a* such that $a^3 = x$.

Fractions

A **fraction** (from the Latin *fractus* = broken) is a number that represents a part of the whole.

 $\frac{1}{2} \qquad \frac{1}{3} \qquad \frac{1}{4}$ one half one third one quarter

Fractions consist of a **numerator** and a **denominator**, the numerator represents a number of equal parts and the denominator represents how many of those parts make up the whole.

numerator denominator

An example is $\frac{3}{4}$ or $\frac{3}{4}$ where the numerator 3 represents 3 equal parts of the whole and the

denominator 4 tells us that 4 parts make up the whole.

A kind of fraction still in common use is the "per cent", in which the denominator is always 100. Thus 75 % in fraction form is 75/100.

Fractions also represent ratios and division. Thus the fraction 3/4 represents the ratio 3:4 (three to four) and the division $3 \div 4$ (three divided by four).

Laws of exponents

The International Symbols Committee has adopted prefixes for denoting decimal multiples of units.

Numbers	Powers of ten	Prefixes	Symbols
1 000 000 000 000	10^{12}	tera	Т
1 000 000 000	109	giga	G
1 000 000	10^{6}	mega	М
1 000	10^{3}	kilo	k
100	10^{2}	hecto	h
10	10 ¹	deca	da
0,1	10-1	deci	d
0,01	10-2	centi	с
0,001	10-3	milli	m
0,000 001	10-6	micro	μ
0,000 000 001	10-9	nano	n
0,000 000 000 001	10-12	pico	р

To multiply exponential quantities with same base, add the exponents. In the language of algebra, the rule is: $a^m \times a^n = a^{m+n}$. For example: $10^4 \times 10^2 = 10^{4+2} = 10^6$.

To divide exponential quantities with same base, subtract the exponents. In the language of algebra, the rule is: $\frac{a^m}{a^n} = a^{m-n}$. For example: $10^8 : 10^2 = 10^{8-2} = 10^6$.

To raise an exponential quantity to a power, multiply the exponents. In the language of algebra, the rule is: $(a^m)^n = a^{m \times n}$. For example: $(10^3)^2 = 10^{3 \times 2} = 10^6$.

Any number (except zero) raised to the zero power is one. In the language of algebra, the rule is: $a^0 = 1$. For example: $\frac{a^2}{a^2} = a^{2-2} = a^0 = 1$.

Any base with a negative exponent is equal to 1 divided by the base with an equal positive exponent. In the language of algebra: $a^{-x} = \frac{1}{a^x}$. For example: $10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0,001$.

Pythagorean Theorem

In mathematics, the **Pythagorean theorem** (in American English) or **Pythagoras' theorem** (in British English) is a relation in Euclidean geometry among the three sides of a right triangle (*right-angled triangle* in British English). It states:

In any right triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle).

The theorem can be written as an equation:

$$c^2 = a^2 + b^2,$$

where c represents the length of the hypotenuse, and a (altitude) and b (base) represent the lengths of the other two sides.

Trigonometric functions

In a right triangle, there are several relationships which always hold true. These relationships pertain to the length of the sides of a right triangle, and the way the lengths are affected by the angles between them. An understanding of these relationships, called trigonometric functions, is essential for solving many problems in a-c circuits such as power factor, impedance, voltage drops, and so forth.

Trigonometric functions apply to right triangles only!

Using the trigonometric functions, it is possible to determine the length of one or more sides of a triangle or the degrees of angles, depending on what is presently known about the triangle. For instance, if the lengths of any two sides (*a-b* or *b-c* or *c-a*) are known, the third side and the both angles α (alpha) and β (beta) can be determined. The triangle can also be solved if the length of any one side and one of the angles (α or β) are known.

The first basic fact regarding triangles is that in any triangle, the sum of the three interior angles of a triangle always equals 180°; $\alpha + \beta + \gamma = 180$. If one angle is 90° (a right angle) then the sum of other two angles must be 90°. If angle gamma is 90°, angle β is known, α can be quickly determined.

The second basic fact you must understand is that for every different combination of angles in a triangle, there is a definite ratio between the lengths of the three sides. The triangle consisting of the base, side b, the altitude, side a, and the hypotenuse, side c. The hypotenuse is always the longest side, and is always opposite the right angle.

The sides ratio $\frac{base}{hypotenuse}$,	The sides ratio $\frac{altitue}{hypotenuse}$,	The sides ratio $\frac{altitude}{base}$, or
which is always referred to	which is always referred to	$\frac{opposite}{adjacent}$ which is always re-
as the cosine ratio of α	as the sine ratio of α	ferred to as the tangent ratio of α
$\cos \alpha = \frac{b}{c}$	$\sin \alpha = \frac{a}{c}$	$\tan \alpha = \frac{a}{b}$

Note that three ratios are shown to exist for the given value of α :

Other important relationships of trigonometric functions:

$$\sin \alpha^2 + \cos \alpha^2 = 1 \qquad \Rightarrow \cos \alpha = \sqrt{1 - \sin \alpha^2} \text{ or } \sin \alpha = \sqrt{1 - \cos \alpha^2}$$
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

Formulas			
Area of square	$S = a^2$	Cube volume	$V = a^3$
Circumference of circle	$O = 2 \times \pi \times r$	Area of circle	$S = \pi \times r^2$
Cylinder volume	$V = \pi \times r^2 \times h$	Rectangular prism volume	$V = a \times b \times c$

Wire resistance	$R = \rho \frac{l}{S}$
Electrical resistance	$R = \frac{U}{I}$
Electrical power	$P = U \times I$

Electro-technical applications

In previous problems, the sides of the triangles were given in meters, inches and units. When applying trigonometry to A/C circuit problems, these units of measure will be replaced by such measurements as ohms, amperes, volts, and watts. Angle φ will often be referred to as the phase angle. However, the solution of these A/C problems is obtained in exactly the same manner as the foregoing triangle problems. Only units and some terminology are changed.

Problem 1:

Problem 2:

Summary of basic electrical formulas which you should know:

decimal point – desatinná čiarka square root – druhá odmocnina cube root – tretia odmocnina fraction – zlomok, podiel numerator – čitateľ denominator – menovateľ angle – uhol relationship – vzťah, pomer pertain – týkať sa essential – základný, nevyhnutný measurement – meranie volume – objem area – plocha, obsah side opposite – protiľahlá strana equation – rovnica equation with two unknowns – rovnica s dvoma neznámymi addition – sčítanie sum, addition – súčet subtraction – odčítanie difference – rozdiel multiplication – násobenie product – súčin division – delenie hypotenuse – prepona altitude – odvesna *a* base – odvesna *b* side adjacent – priľahlá strana

fuctions	how to read
1/2	one half
3 3/4	three and three quarters
0,5	o point five; zero point five; nought point five
6,005	six point zero zero five
a + b	<i>a</i> plus <i>b</i>
c-d	c minus d
$e \pm f$	<i>e</i> plus or minus <i>f</i>
$ab; a \cdot b; a \times b$	<i>a</i> times <i>b</i> ; <i>a</i> multiplied by <i>b</i>
$c \div d$	c divided by d
a = b	a equals b; a is equal to b
$x \neq y$	x is not equal to y
a/b	a solidus b; a slant b
x	r over v
\overline{v}	x over y
ab	
$\overline{c+d}$	a times b over c plus d
$a \equiv b$	<i>a</i> is identical to <i>b</i>
<i>a</i> !	<i>a</i> factorial; factorial <i>a</i>
x < y	x is less then y
x > y	x is greater then y
$x \leq y$	x is less then or equal to y
a_b	a subscript b
a^2	a squared
a^{xy}	<i>a</i> to the power <i>xy</i>
$\sqrt[3]{a}$	cube root of a
$\sqrt[n]{m}$	$n^{\rm th}$ root of m
$\sin \alpha$	sine α
$\cos \varphi$	cosine φ
$\log x$	log of x
n	
$\sum a_x$	the sum <i>a</i> from <i>x</i> equals one to <i>n</i>
x=1	

Fundamental geometrical notions

point	bod
intersection	priesečník
straight line	priamka
axis (of symmetry)	os (súmernosti)
parallel	rovnobežný
perpendicular	kolmý
right angle	pravý uhol
acute angle	ostrý uhol
obtuse angle	tupý uhol
curve	krivka
arc	oblúk
right triangle	pravouhlý trojuholník
trapezium	lichobežník
polygom	mnohouholník